
Mission 10:
Reaction Tester

Student Workbook

Let’s get physical!

In the last mission, the program used functions,
parameters and arguments. For this mission,
you tap into the power of CodeX by using the
built-in capabilities of its powerful clock.

Go to the Mission 10 Log and fill out the
Pre-Mission preparation.

● In this mission you will use a computer
clock to measure time. What are some
things you use a timer for?

Page 1

Mission 10: Reaction Tester

How fast is your reaction time?
In this project you will make a device to
measure your reaction time. This project will:
● Give a 3-2-1 countdown
● Wait a random delay
● Turn the pixels GREEN
● Measure the reaction time for the button press
● Loop and do the countdown again

Mission 10: Get started
● Go to https://sim.firialabs.com/ and log in.

● Go to Mission 10

● Click and start Mission 10.

Page 2

https://sim.firialabs.com/

Objective #1: Milliseconds

This mission will require you to turn on all the pixels the same
color.

The code so far turned on a single pixel at a time:

● pixels.set(0, RED)

Using a list, there is an easier way:

● pixels.set([RED, RED, RED, RED])

● Do you notice the list with four items?
● The pixels.set() command needs parenthesis,
and the list needs []

● Make sure you use both, in the correct order

Page 3

Objective #1: Milliseconds

CodeX’s powerful clock can work in
milliseconds -- that’s 1,000 times
per second!

You will want a random time in
milliseconds, so you just have to do
a little math.

random.randrange(1, 5) gives a random number between
1 and 4

random.randrange(1000, 5000) gives a random number
between 1000 and 4999.

● This gives you a good range of milliseconds, but sleep()
uses seconds

● 1000 milliseconds = 1 second, so
● Divide the random number by 1000!

Page 4

Objective #1: Milliseconds

DO THIS:
● Start a new file named Reaction_Time
● Import the codex module
● Import the random module
● Import the time module
● Turn all pixels BLACK
● Get a random number using 1000 and 5000 as
the range

● Divide the random number by 1000
● Use the random number in sleep()
● Turn all pixels GREEN

Page 5

Objective #2: The Countdown
To make this into a game, you want to
give a countdown.

● This will let the player know the
game is starting.

● It also indicates when to start the
timer.

● Use display.clear() to clear the display
● Use display.print() to countdown from 3 to 2 to 1

(with a sleep delay in between)
● You can scale the number bigger on the display for easy

viewing
○ display.print(“3”, scale=6)

○ sleep(1)

Page 6

Objective #2: Click to flick

DO THIS:
● Clear the display & the pixels

○ Set all pixels to BLACK
● Countdown from 3 to 2 to 1
● Clear the screen again
● Then continue the rest of your code to get a

random number and light all pixels GREEN

Page 7

Objective #3: The Fourth Dimension
Computers relay on electronic clock
circuits
● Clock circuits are used to move

through code
● They are used as time delays in the

sleep() command
● When you turn on CodeX, its clock

is continuously running.

So far you have used the time module for sleep()
● The time module also has a function that returns the

current time on the computer clock

If you want to use more than one function from a module, you
need to import the entire library, not just one function
● from time import sleep
● This imports only one function
● import time
● This imports the entire library

Page 8

Objective #3: Fun functions
When you import the entire library, you must reference it
when calling one of its functions.
● time.sleep(1)
● time.ticks_ms()
● This returns the current time
● It returns a value, so the value needs to be assigned to a

variable
● start_time = time.ticks_ms()

DO THIS:
● Go to your Mission Log and answer the

question about importing a module

Page 9

Objective #3: Fun functions

DO THIS:
● Change from

time import sleep to import time

● Change all the sleep(1) commands to
time.sleep(1) commands
○ HINT: There are four sleep() commands

After the pixels turn GREEN:

● Assign start_time the value from
time.ticks_ms()

● Wait until BTN-A was pressed
● Assign end_time the value from

time.ticks_ms()

● Print start_time and end_time

Page 10

Objective #4: Time Differential
You have the start_time and
end_time.

The reaction time is the difference
of the two variables.

● You can just subtract the two:
○ reaction_time = end_time - start_time

● OR use another time module function that finds the
difference:
○ reaction_time = time.ticks_diff(end_time, start_time)

DO THIS:
● Go to your Mission Log and answer the
question about functions in the time module

Page 11

Objective #4: Time Differential

DO THIS:
● Assign reaction_time the difference between
end_time and start_time

● Change the display.print() statements to print
the reaction_time instead of start_time and
end_time

Page 12

Objective #5: Let’s Keep Playing
Great job so far! The reaction game is fun, but what if you
want to play more than once?

● Make the game wait for a button press, and then play
again

● You will need an infinite loop with most of the code in it
● You will need to wait for a button press after displaying

the reaction time
● You already have code for waiting for a button press, so

you can copy and paste it

Page 13

Objective #5: Let’s Keep Playing

DO THIS:
● Add an infinite loop after the import statements
● Indent all the code inside the loop
● Add another wait loop at the beginning of the

loop

Page 14

Objective #6: Reduce Repetition

Take a look at your code. Do you notice a block of code that is
repeated?

● You learned in Mission 9 that you can write a function
instead of copy-paste or repeating code, you can write a
function instead.

● There are two places in your code that wait for BTN-A to
be pressed

Page 15

Objective #6: Reduce Repetition

DO THIS:
● Write await_button() function.

○ HINT: A function goes near the top of your
code

● Delete the code that waits in the while loop.
● Call thewait_button() function two times in the

while loop.

Mission Quiz: Quiz Timing
Test your skills by taking the quiz.

Page 16

Objective #7: No Cheating
Fix a bug. Oh no! Players are pressing the button during the
delay and getting ultra fast times.

● The buttons.was_pressed() is always listening
● Even during the random delay
● Solve this problem by resetting the

buttons.was_pressed() just before starting the timer

DO THIS:
● Reset buttons.was_pressed(BTN_A) just

before the pixels turn GREEN

Page 17

Mission Complete

You have completed the tenth mission.

Do this:

● Read your “Completed Mission” message
● Complete your Mission 10 Log

○ Post-Mission Reflection
● Get ready for your next mission!

Wait! Before you go … Clear the CodeX
Go to FILE -- BROWSE FILES

Select the “Clear” file and open it

Run the program to clear the CodeX

Okay. Now you can go.

Page 18

